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Abstract 

Despite of the fact that large line segment datasets are becoming more and more popular, most of the 

analysis for estimating the selectivity of window queries posed on spatial data -the most important 

parameter for query optimization- has focused on point or region data only. 

In this paper we move one significant step forward in line segment datasets theoretical analysis. We 

discovered that real lines closely follow a distribution law, that we named the SLED law (Segment 

LEngth Distribution). The SLED law can be used for an accurate estimation of the selectivity of window 

queries. Experiments on a variety of real line segment datasets (hydrographic systems, roadmaps, 

railroads, utilities networks) show that our law holds and that our formula is extremely accurate, 

enjoying a maximum relative error of 4% in estimating the selectivity. 
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1 Introduction 

Spatial data appear in numerous applications, such as GIS [8, 9] multimedia [6] and even traditional 

databases. Statistical modeling of real data involves the concise description of a dataset with a few 

parameters (e.g., total count, area, length etc.), so that we can obtain accurate estimates. Such a 

concise description is useful for at least the following settings: 

• selectivity for window queries, k nearest neighbor queries, spatial joins etc. 

• analysis of spatial access methods (SAM). For example, how many nodes will an R-tree or quadtree 

require to store such a dataset, how many such nodes a query will touch, etc. 

Although some statistical models have been developed in the past for points, rectangles and regions, 

as we describe in detail in Section 2, no theoretical results exist for line segment data. Previous analysis 

are limited to empirical comparisons of the performances of various spatial indexing methods (see [7] 

for a comprehensive survey on the topic). 

In this paper we move one significant step forward in line segment datasets theoretical analysis. We 

focus on large collections of line segments, like for instance roadmaps, hydrographic systems, railways, 

utilities networks and so, and we show that they can be efficiently modelled by means of a novel 

distribution law. Such a model will reveal its usefulness in predicting the selectivity of window queries 

posed on the dataset. Moreover, we show that a similar law holds for any window subset of a given line 

segment dataset. This is important for two reasons: (1) from a theoretical point of view, since it allows 

to predict the length of the longest line segment in a query window; (2) from a practical point of view, 

since we can quickly estimate the length of the longest line segment of the whole set by sampling from 

a query window. 

The remainder of the paper is organized as follows: Section 2 gives a brief description of previous 

work on the topic. In Section 3, we provide the theoretical basis of our paper and we give the distribution 

law of line segment datasets. In Section 4 we show how such a law can be used to estimate selectivity 

of window queries on line segment datasets and we provide a method for a fast estimation of the length 

of the longest line segment of the dataset. Section 5 presents a large collection of experimental results 

on real line segment data (rivers, roadmaps, railroads, utilities networks) which give empirical evidence 

of the theoretical analysis. Finally, Section 6 contains concluding remarks and future work. 

2 Survey 

The main topic within the spatial database field which is related to our present work is query opti- 

mization, and, more specifically, selectivity estimation in window (or range) queries, which are the most 

popular spatial access operation [12]. 



In [10, 12], an analytical formula to compute selectivity for a window query as a function of the 

underlying data morphology and distribution is given. To apply such a formula when these parameters 

are unknown, one typically makes the uniformity and independence assumption on them. Unfortunately, 

these assumptions do not hold for real datasets and generally lead to pessimistic results [3]. 

Whereas for one-dimensional data some developed non-uniform distributions (like for example the 

Zipf distribution [14]) have met with success, for multi-dimensional data difficulties have not been over- 

come yet. In fact, some proposed non-uniform model (such as, for instance, clustering ad-hoc methods 

[11, 1]), are not flexible enough to be applied to a large variety of data. Recently, the introduction 

of the concept of fractal dimension of a set of spatial data (e.g., points, regions, etc.) has allowed 

to better describe the structural properties of the data themselves and to precisely analyze space and 

time performances of spatial data structures generally used to store them. Most of the analysis efforts 

have focused on point data [5, 2]. In fact, for point data, the count and the fractal dimension of the 

dataset are sufficient to accurately estimate selectivities for window queries, spatial joins and nearest 

neighbor queries. For non-point data, the most relevant results achieved are related to optimal packing 

for R-trees construction [10] and to the estimation of the number of quadtree blocks that are needed to 

store a spatial dataset consisting of a single region [4]. Recently, novel results for region data have been 

proposed in [13], where the authors developed a realistic statistical model, and showed how to use it to 

compute the selectivity of window queries. 

However, all these works focus on point, rectangle or region datasets only. Therefore, to the best of 

our knowledge, this is the first attempt to model accurately line segment datasets. 

3    Fundamental laws: SLED and SUD 

Length of segments in real line segment datasets do not obey a uniform distribution. Rather, it turns 

out that the complementary cumulative distribution function (CCDF) of the lengths follows the SLED 

law (Segment LEngth Distribution), that is: 

Conjecture 1 (SLED law) The number of line segments C(£) of length greater than or equal to £, 

follows the law 

C(C) = k ■ a~(     k, Q > 0,      t > 0. (1 

Moreover, it turns out that the slope (i.e., the non-oriented acute angle between a segment and the 

horizontal axis) distribution of real line segment datasets obeys the SUD law (Slope Uniform Distribu- 

tion), that is: 

Conjecture 2 (SUD law) The number of line segments T(6) having slope equal to 0 is 



T(0) — constant 0 < 0 < f. (2) 

Based on the above laws, in the next section we show how to estimate the selectivity and the length 

of the longest line segment for window queries. Table 1 gives a list of symbols used throughout the 

paper. 

Symbol Definition 

£ Dataset of line segments 

N Total number of line segments of £ 

L{C) Total length of £ 

ti Length of the i-th line segment in £ 

ot Slope of the i-th line segment in £ 
p lmax Length of the longest line segment in £ 

1{C) Average length in £ 

C(£) Number of segments of £ having length at least £ 

s Subset of line segments 

N' Total number of line segments of S 

£' max Length of the longest line segment in S 

i(s) Average length in S 

C'{£) Number of segments of S having length at least £ 

?= (Qx,qy) Query window of sides qx, qy 

Sel(jC, q) Selectivity for window queries of sides qx, qy 

Table 1: Symbol table 

4    Analysis 

For clarity of presentation, we will first define a preliminary problem where line segments are supposed 

to be parallel, giving the exact selectivity and providing an accurate approximation of it. After, we 

will analyze the general case where line segments are arbitrarily oriented, providing also in this case an 

exact and an extremely accurate solution to the selectivity problem. Since such an estimation assumes 

the knowledge of the length of the longest line segment £max and the number of line segments N of the 

dataset, we will lastly show how to quickly estimate £max once the longest line segment of a subset of 

the whole dataset is known. This latter result is of particular interest for practical cases, since it allows 

to extrapolate the SLED law of the dataset by sampling from a subwindow. 



4.1    Preliminary problem: selectivity of parallel line segments 

Let us first focus on parallel line segments. After, all the results will be extended to arbitrarily oriented 

line segments. 

PROBLEM 1: selectivity of parallel line segments 

Given: 

• A set C = {h,hi ■ • -JN} of parallel line segments having slope 0 < 6 < n/2, embedded in the 

unit square U = [0,1] x [0,1]. 

• The length £max of the longest line segment in C. 

• A qx x qy window query q. 

Find the selectivity Sel(C,q) in £ of the window query q, that is, the number of line segments in C 

intersecting q. 

Let £{ be the length of the segment /,. To compute Sel(C,q), we adapt the formula in [10, 12] 

to manage line segments rather than rectangles. In fact, since the rectangular queries are uniformly 

distributed in the unit square address space, then the probability that a window intersects a line segment 

equals the probability that a point falls onto the line segment of £ 'inflated' as shown in Figure 1. 

Figure 1: The 'inflated' line segment segment (shaded area) 

Thus, a line segment of length l{ behaves like a polygon of area 

£i ■ (qr ■ sin 0 + qy ■ cos 6) + qr • qy. 

Summing over all the inflated line segments we therefore obtain 

N 
Sel{C, q) = ^2 fa ' (V* • sin Ö + gy • cos 0) + qx • qyJ = L{C) • {qT -sm0 + qy- cos 0) + qT • qy • N     (3) 

»=i 

where L(C) is the total length of the set of line segments. 

However, the question is to estimate the selectivity without knowing L(C) (and, as we will see later, 

to estimate the selectivity for arbitrarily oriented line segments). Given Eq.(l), we show that we can 

compute an accurate estimation, once we fix k and Q. We prove the following: 



Theorem 1 Given a set C = {h,h, ■ ■ -JN} of parallel line segments embedded in the unit square 

U — [0,1] x [0,1], having a fixed slope 0 < 0 < ir/2, having lengths obeying to the SLED law and whose 

longest line segment has length £max, the selectivity of a rectangular window query q is 

Sel(C, q) = 4,ax • (N~i~inN) ■ (fc ■ sin 9 + qy • cos9) + qx ■ qy ■ N. (4) 

Proof. We start with Eq.(3). We need to estimate L(C). By assumption, C obeys to the SLED law 

(Eq.(l)). Hence, from the initial conditions ./V = C(0) = k and 1 = C(£max) = k ■ (a)_^max it follows 

that a = tm^ and therefore 

C(£) = N1- w (5) 

and from the inverse relation we have 

^(C)=^max(l-logJVC). 

Therefore, it follows 

N N 

L(C) = J2 A- « 4,a* J     1 - logAr Cd€ = t, C-—-(ClnC-C) 
InN v ' 

from which the thesis follows. 

N 
— P 

1 (- 

-l-lniV\ 
IniV       ) 

(6) 
D 

In the next section, we relax the assumption of parallelism, to front real instances of line segment 

datasets. 

4.2    Real problem: selectivity of arbitrarily oriented line segments 

However, real line segment datasets are far to contain only parallel line segments. Therefore, the next 

step is to solve the following realistic and more general problem: 

PROBLEM 2: selectivity of arbitrarily oriented line segments 

Given: 

• A set C = {/x, l2,..., IN} of line segments having slopes Oi,02,..., 6N, embedded in the unit square 

U = [0,1] x [0,1]. 

• The length £max of the longest line segment in £. 

• A qx X qy window query q. 



Find the selectivity Sel(C.q) in C. of the window query q, that is, the number of line segments in C 

intersecting q. 

For the above problem, Eq. (3) becomes 

N N 

Sel(C, q} = ^2 {(i ' (I* ' sin ^ + (ly ' cos 0i) + Qr ' Qy) = 1L 
(i ' (^ • sin °> + fly • cos 0'') + &• • qy • Ar-   (7) 

The question here is to estimate the selectivity without knowing Cj and #,, ? = 1,...,JV. In this case, 

assuming the dataset obeys the SLED law (Eq.(l)) and the SUD law (Eq.(2)), we can prove the following: 

Theorem 2 Given a set C — {/i, I2, ■ ■ •, IN} of line segments embedded in the unit square U = [0,1] x 

[0,1], having slopes 61,62,.. . ,#/v obeying to the SUD lair, having lengths obeying to the SLED law and 

whose longest line segment has length Cmax> the selectivity of a rectangular window query q is 

Sel(C, q) = $- £max • (N~^N) ■ (qT + qy) + 7, • qy • N- (8) 

Proof. Since segments have slopes uniformly distributed, independently of the length of a line 

segment, we can substitute the term Yli=\ 1r • sin 0, + qy • cos#, of Eq. (7) with its average value over 

the interval [0, TT/2], that is 

r/2 r W2 /       qT • sin 6 + qy • cos 0 dd " ■ '   " 
Jo  

— qT • cos 6 + qy • sin 6 
0  QT + (h tg\ 

TT/2 TT/2 TT/2 

Then, the proof immediately descends from Theorem 1. □ 

The above theorem will provide a good estimation for window selectivity on real line segment 

datasets, since, as we show next experimentally, the assumptions that line segment datasets obey the 

SLED and the SUD law are realistic. 

4.3    Practical issue: fast estimation of ^max 

Sometimes we do not have at disposal £max directly from the dataset. Therefore, computing it requires to 

scan the entire dataset and this could be very time consuming. However, we conjecture that subwindows 

of the dataset will follow the SLED law as well. Moreover, we also conjecture that the average length 

of a line segment will be the same in the whole dataset and in a subwindow of it. More formally, if we 

focus on a subset S = {«i,S2, • • -,«#'} of C, with Ar' < iV, having the longest line segment of length 

^maxt we are conjecturing: 

Conjecture 3 C{£) = 7V1_w =$. C'(C) = Ar/1_C^. 



Conjecture 4 £{C) = £{S). 

In the experimental section, we will show that these conjectures are altogether realistic. Hence, £max 

can be inferred in the following way: from Conjecture 3 and from Eq. (6), the average length 1(S) of a 

line segment in S is 

and therefore, from Conjecture 4, it will be 

p (N-l-\nN\ _ «I (N'-l-\nN'\ 
tmax ' ^    N-lnN    )—lma.x'{    N'-lnN'    ) (11) 

from, which, knowing £'max, N' and N we can easily compute £ma,x. In the experimental section, we will 

show the accuracy of our estimation. 

Observation 1 On the contrary, if £max is given in advance, we can use the above relation to estimate 

the length of the longest line segment in a subwindow of the image space. This can be useful in answering 

to a query like: "Given a point in the two-dimensional space containing the line segments, which is the 

longest line segment within a radius of xV, which usually occurs in GIS applications. 

5    Experiments on real datasets 

To assess experimentally the accuracy of our analysis, we have used four line segment datasets of com- 

pletely different nature, shown in Figure 2. All of them are available at http://www. maproom.psu.edu/dcw/, 

and they are: 

• The Amazon River (RIVER): This consists of N = 150241 line segments, embedded in a 17.43 X 

11.89 image space, having a total length L(C) = 1457.7 and such that £max = 0.100853. 

• The roadmap of Italy (ROAD): This consists of N = 28534 line segments, embedded in a 11.85 X 

11.59 image space, having a total length L(C) = 459.273 and such that £max = 0.165347. 

• The railroads of Japan (RAIL): This consists of JV = 17836 line segments, embedded in a 16.01 X 

14.23 image space, having a total length L(C) = 259.87 and such that £max = 0.127677. 

• The utilities of Germany (UTIL): This consists of N = 17790 line segments, embedded in a 

9.01 x 7.48 image space, having a total length L(C) = 494.053 and such that £max = 0.220543. 

The code for the window queries has been written in C under UNIX and the simulation experiments 

ran on a SUN SPARC station. In the following subsections we present experiments for: (a) verifying 

the SLED law (Eq. (1)); verifying the SUD law (Eq. (2)); (c) verifying the accuracy of our formula in 

estimating Sel(C,q) (Eq. (8)); (d) verifying the accuracy of our formula in estimating £max (Eq. (11)). 



AMAZON rivet ITALY roedmap JAPAN railroads GERMANY utilities 

(a) RIVER 

(Amazon River) 

(b) ROAD 

(Roadmap of Italy 

(c) RAIL (d) UTIL 

(c) (Railways of Japan)     (Utilities of Germany) 

Figure 2: Used datasets: (a) RIVER, (b) ROAD, (c) RAIL, (d) UTIL. 

5.1    Verifying the SLED law 

To assess the SLED law, we have computed the CCDF of the line segment length for each dataset. 

Figure 3 shows in a log-linear diagram the obtained results (solid line), along with the theoretical 

expected distribution given by Eq. (5), appearing as a straight line in the log-linear diagram (dotted 

line). 
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10 

(a) RIVER (b) ROAD (c) RAIL (d) UTIL 

Figure 3: CCDF of the lengths (solid line) for the used datasets in a log(count) vs length diagram, 

along with the theoretical expected distribution given by the SLED law (dotted line): (a) RIVER, (b) 

ROAD, (c) RAIL, (d) UTIL. 

It is impressive that all four datasets, even if their characteristics are so different, obey almost 

perfectly to the SLED law. We have also tested the SLED law on other datasets, obtaining similar 

results, which are here omitted for space constraints. 

5.2    Verifying the SUD law 

Moreover, we have computed the distribution of the slopes of the line segments, to ascertain its uni- 

formity (SUD law). We have divided the interval [0,7r/2] in 18 subintervals of width 7r/36, i.e., each 

interval corresponds to an angle of 5°, and we have computed the frequency of each subinterval. Figure 4 



shows using histograms the obtained results for each dataset: note that all these graphs (apart from a 

slight deviation in the UTIL dataset), show a uniform distribution of the line segment slope. 
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Figure 4:  Line segment slope distribution, using an interval range of 5°, for each used dataset:  (a) 

RIVER, (b) ROAD, (c) RAIL, (d) UTIL. 

5.3    Verifying our formula for selectivity 

We used Eq.(7) to compute the exact selectivity on each dataset for query windows of relative area 

ranging from 0.05% to 50% of the image space, and we compared it with the prediction provided by 

Eq. (8). We examined three types of queries, depending on the aspect ratio of the query window: 1:1 

(square), 1:2 and 2:1. Figure 5 shows the percentage relative error of our approach, for the RIVER, 

ROAD, RAIL and UTIL dataset, respectively. Note that for each dataset, our approach is usually 

within 1% to the reality, and never exceeds a 4% of relative error. Results appear to be independent 

from the window aspect ratio. The slight degradation of the accuracy for the UTIL dataset can be 

ascribed to the not perfect according of such dataset to the SUD law. 

Finally, following the recommendations from statistics, we have also computed the geometric average 

of relative errors, for each dataset and for each different window aspect ratio, summarized in Table 2. 

Even in this case, it is clear the accuracy of our predictions. 
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Figure 5: Relative error (%) vs query window relative area, for square, 1:2 and 2:1 window queries: (a) 

RIVER, (b) ROAD, (c) RAIL, (d) UTIL. 



Geometrie avg. rel. error (%>) 

Aspect ratio 

Dataset 1:1 1:2 2:1 

RIVER 

ROAD 

RAIL 

UTIL 

0.08 

0.01 

0.09 

0.53 

0.09 

0.08 

0.07 

0.29 

0.09 

0.06 

0.13 

0.83 

Table 2: Geometric average relative error (%,) in estimating Sel(C.q) for each dataset and for each 

aspect ratio of the query window 

5.4    Verifying the estimation of ^max 

Finally, to check that the estimation of <?max from sampling works well, we considered two subwindows 

of the ROAD dataset, as shown in Figure 6, where Window-30% consists of 8983 line segments (i.e., a 

30% of the total number of line segments) having C'mSLX = 0.145298, and Window-10% consists of 2535 

line segments (a 10% of the total) having £'max = 0.130847. 

ROAD subwindows ROAD Window-30% ROAD Window-10% 

46 

44 

42 

40 

36 

Window-30% — 
Window-10% 

» 

10        12        14       16        16       20 

(a) ROAD dataset 

10     10.5     11     11.5     12     12.5     13     13.5     14 

(b) Window-30%, 

11   11.2 11.4 11.6 11.6  12  12.2 12.4 12.6 12.8   13 

(c) Window-10%, 

Figure 6: Zooming into ROAD dataset: (a) the whole set with two subwindows; (b) the largest subwin- 

dow (Window-30%); (c) the smallest subwindow (Window-10%). 

As a preliminary check, we have verified the truthfulness of our Conjectures 3 and 4. To verify 

Conjecture 3, we have computed the CCDF of the line segment length for the above windows, to 

verify they obey to the SLED law. This produces the graphs shown in a log-linear diagram in Figure 7. 

Afterwards, to verify Conjecture 4, we have computed the average length for each dataset, obtaining the 

results summarized in Table 3, where we also show the percent relative error with respect to the average 

length of the ROAD dataset. From the obtained results, we can conclude that both the conjectures 

hold. 

10 



Dataset £ Relative error (%) 

ROAD 

Window-30% 

Window-10% 

0.016111 

0.015943 

0.016635 

1.04 

3.25 

Table 3: Average length (first column) and relative percent error (second column) for the ROAD dataset 

and its subwindows. 

Observation 2 Note that the theoretically expected SLED laws of the ROAD dataset and of its sub- 

windows appear as lines almost perfectly parallel. In fact 

£(C) = 
N-l-lriN 

N-\nN 
£ 
In AT 

that is, £(C) is almost equal, in a log-linear diagram, to the negated inverse of the slope of the line 

corresponding to the theoretical SLED law of C. Since from Eq. (11) we have 

"max   ^ "max ,      . 

lnJV'~lnJV [    > 

it follows that in a log-linear diagram, the SLED law graphs for the whole set and for its subsets will 

appear as almost perfectly parallel lines (with slope 1(C)). Therefore, Figure 7 gives a visual proof of 

our conjectures. 
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Window-10% 
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Length 

Figure 7: Comparison of the CCDF of the segment length for ROAD dataset and Window-30% and 

Window-10% (dotted lines), along with the theoretical expected distributions given by the SLED laws 

(solid lines). 
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Finally, we used Eq. (11) to estimate CmaT, and we obtained the results summarized in Table 4. 

Again, the error is extremely law (3.25% maximum), which confirms the accuracy of our approach. 

Dataset Estimation of 4nax Relative error (%,) 

Window-30% 

Window-10% 

0.163626 

0.170732 

1.04 

3.25 

Table 4:   Estimation of £max (first column) and relative percent error (second column) for the two 

subwindows of the ROAD dataset. 

6    Conclusions 

The main contribution of this paper is the discovery of a law that governs real line segment datasets, such 

as rivers, roadmaps, railroads, utilities networks and many others. We showed that the complementary 

cumulative length distribution of the line segments follows a law, that we named SLED law. Thus, 

only two measures are needed (the total count of objects and the length of the longest line segment), 

to achieve extremely accurate estimation for selectivity of window queries. Our experiments on diverse, 

real datasets, showed that our approach achieves selectivity estimates within 4% for the maximum 

relative error, and usually performs within 1%). Additional contributions are: 

• A formula for computing the exact selectivity for a line segment dataset, given the length and the 

slope of each segment. 

• A fast estimation of the length of the longest line segment of a dataset by sampling from a sub- 

window. This is especially important for a practitioner, since it allows to estimate the selectivity 

without scanning the entire database when £max is not known in advance. 

Promising future directions include the study of additional query types (nearest neighbor etc.) and 

the analysis of SAMs on real line segment data. 
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